Mean Curvature and Asymptotic Volume of Small Balls

نویسندگان

  • Dominique Hulin
  • Marc Troyanov
چکیده

where Bp(t) is the ball of radius t centered at p and Bp (t) is the portion of the ball lying inside the sphere SR . Our goal is to show that, up to a negligible term, a similar formula holds for any hypersurface S in Rn, the factor 1/R being replaced with the mean curvature of the hypersurface. We briefly recall what mean curvature is. Let S be a hypersurface of class C2 in Euclidean n-space Rn, and assume that a unit normal vector field N : S → Rn has been chosen (this is always possible locally). It is a basic fact that the normal acceleration 〈c′′(t), N (c(t))〉 of a C2-curve c(t) on S depends only on its tangent vector V (t) = c′(t): indeed,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below

In this paper the comparison result for the heat kernel on Riemannian manifolds with lower Ricci curvature bound by Cheeger and Yau [CY81] is extended to locally compact path metric spaces (X, d) with lower curvature bound in the sense of Alexandrov and with sufficiently fast asymptotic decay of the volume of small geodesic balls. As corollaries we recover Varadhan’s short time asymptotic formu...

متن کامل

On the Shape of Compact Hypersurfaces with Almost Constant Mean Curvature

We show that the oscillation of the scalar mean curvature of the boundary of a set controls in a quantitative way its distance from a finite family of disjoint tangent balls of equal radii. This result allows one to quantitatively describe the geometry of volume-constrained stationary sets in capillarity problems.

متن کامل

On the asymptotic spectrum of the reduced volume in cosmological solutions of the Einstein equations

Say Σ is a compact three-manifold with non-positive Yamabe invariant. We prove that in any long time constant mean curvature Einstein flow over Σ, having bounded C space-time curvature at the cosmological scale, the reduced volume V = (−k 3 )V olg(k)(Σ) (g(k) is the evolving spatial three-metric and k the mean curvature) decays monotonically towards the volume value of the geometrization in whi...

متن کامل

The volume preserving motion by mean curvature as an asymptotic limit of reaction diffusion equations

We study the asymptotic limit of the reaction-diffusion equation E , E 1 r/ EX 1 / E. * e ut = Au 2 / ( u ) + g ( u ) \ t as £ tends to zero in a radially symmetric domain in R subject to the constraint J h(u) dx = const. The energy estimates and the signed distance function approach Q are used to show that a limiting solution can be characterized by moving interfaces . The interfaces evolve by...

متن کامل

Generalized flame balls

We consider generalized flame balls which correspond to stationary spherical flames with a flow of hot inert gas, either a source or a sink, at the origin. Depending on the flow, these flames can have positive, zero, or negative burning speeds, with zero speeds characterizing the Zeldovich flame balls. A full analytical description of these structures and their stability to radial perturbations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2003